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Abstract. Using a stable pseudospectral multi-domain method we investigate the dynamics of
localized wavefields in the extended derivative nonlinear Schrödinger equation, with particular
emphasis on the critical mass and structure of the initial conditions that promote wave collapse.
The results are found to correspond well with theoretical observations based on a Lagrangian
approach and through comparison with solutions of the critical nonlinear Schrödinger equation.
Inclusion of high-order nonlinear dissipation due to the self-induced Raman effect, leading to
the Raman-extended derivative nonlinear Schrödinger equation, is found to inhibit finite-time
collapse in certain cases.

1. Introduction

In the quasi-monochromatic approximation, high-frequency waves evolving in nonlinear
dispersive media are usually analysed in the framework of the nonlinear Schrödinger (NLS)
equation, which formally follows from a straightforward Taylor expansion of the nonlinear
dispersion lawω = ω(k, |E|2), around the pointω0 = ω(k0, 0) attached to the unperturbed
wave with frequencyω0, wave numberk0 and amplitudeE. This equation is widely applied
in many branches of physics, as in nonlinear optics [1]. Here, recent progress in theory and
experiments on soliton transmission systems with ultrashort pulses has raised an increasing
interest in view of realizing ultrahigh-speed communications. For ultrashort pulses with a
temporal width of the order of a few picoseconds, the width of the frequency spectrum,
1ω, related to the inverse pulsewidth(2t0)−1, is rather large and allows for the occurrence
of high-order dispersive effects, such as nonlinear dispersion and the so-called self-induced
Raman effect [2].

More precisely, for an optical pulse propagating through a monomode dielectric guide
with a nonlinear refraction index, Maxwell equations, governing the electric fieldE, can
be expanded with respect to the scaling parameterε = O(1ω/ω0), which remains small in
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the quasi-monochromatic approximation. In this approximation, the resulting propagation
equation applies to the evolution of extended wavepackets whose temporal and spatial
spectra are narrow enough, i.e.1ω/ω0 ∼ 1k/k0 ∼ ε � 1, for a Kerr-type material with a
linear refraction indexn0 and a small change in the dielectric constant1n/n0 ∼ ε2. This
modification of the refraction index follows from the dependence of the medium on the
wavefield intensity, and the dispersion relation takes the perturbed form:ω = ω(k, |E|2).
By making use of the slowly varying envelope substitution

E(x, t) = Re{ψ(x, t)exp(iω0t − ik0x)}
the electric-field envelope of the beam,ψ , is found to obey the well known NLS equation

2i∂tψ − ω′′∂2
ξ ψ + 2α|ψ |2ψ = 0 (1)

to leading order. Here the variableξ = x − V Lg t is a retarded space variable depending on
the group velocity of linear wavesV L

g = (∂ω/∂k)|k=k0, ω
′′ = (∂2ω/∂k2)|k=k0 denotes the

usual dispersion coefficient andα = (∂ω/∂|ψ |2)|k=k0 is a parameter related to the nonlinear
frequency shift. An alternative formulation of equation (1), in which the space variableξ

is replaced by a retarded time variable and the temporal coordinatet by the propagation
distancex, can also be derived when the dispersion relation of the waves is expressed in
terms ofk(ω, |ψ |2) [2].

For wavepackets several wavelengths long with1λ/λ0>1 and for ultrashort wavetrains,
the spectrum may not be narrow, which hence requires to take higher-order terms into
account and to partly discard the previous approximation. As waves of differentk can have
different phase and group velocities, the latter may be sensitive in turn to the local wave
intensity. Thus, an implicit dependence may exist betweenω, k and |ψ |2, yielding non-
trivial second-order terms with dispersion coefficients such as, for example∂2ω/∂k∂|ψ |2,
in the previous expansion ofω(k, |ψ |2) aroundω0 and k0. Among those extra terms,
nonlinear dispersion arises in equation (1) as a nonlinear derivative: i|ψ |2∂ξψ and nonlinear
dissipation due to the self-induced Raman effect occurs in equation (1) in the form:ψ∂ξ |ψ |2
[2, 3]. Moreover, considering intense wavetrains, one has to include quintic nonlinear effects
proceeding from the power expansion of the dielectric constant in a series of the wavefield
intensity, so that Kerr contributions in the form|ψ |4ψ must be retained in equation (1).
Assumingω′′ < 0, the final equation, expressed within the frame comoving with the linear
group velocityV L

g , results in the generalized NLS equation [4].

i∂tψ + ∂2
ξ ψ = q1|ψ |2ψ + q2|ψ |4ψ + (q3+ iq4)ψ∂ξ |ψ |2+ iq5|ψ |2∂ξψ (2)

whereq1, . . . , q5 are real constants. Let us here recall that, strictly speaking, equation (2)
should also contain higher-order dispersive terms involving the third-order derivative of
the envelopeψ with respect toξ . This derivative naturally emerges from the ordering
O(ε3) of the scale expansion of the combined Maxwell equations for the beam electric
field in dielectric monomodes [2]. Furthermore, when considering high-order contributions
such as quintic nonlinearities, it would seem natural to keep this third-order derivative as
a significant dispersive term arising like(∂3ω/∂k3)∂3

ξ ψ from the Taylor expansion of the
dispersion relationω(k, |ψ |2). Such a dispersive term may strongly modify the propagation
of the envelopeψ , as shown in [2]. However, taking into account high-order nonlinear
terms like those in equation (2) depends on the nonlinear response of the medium, whereas
retaining the third-order derivative of the envelope is only justified from the dispersion
properties of the medium. In what follows, we will consider a medium in which the
nonlinear response is sufficiently strong to dominate over high-order dispersion, which
means that the derivative∂3

ξ ψ is assumed to be negligible, as compared with all the nonlinear
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contributions in equation (2). This amounts to truncating the Taylor expansion of the above
dispersion relation at the second order ink and|ψ |2, as justified by considering a relatively
flat dispersion profile.

From a mathematical point of view, equations in the form of equation (2) generally
account for deviations from the standardε-expansion corresponding to the so-called
marginal stablecase, for which the nonlinearity acts against the dispersion to a small extent
only (see e.g. [5]). Also equation (2) is a model that exhibits wave collapse in the sense
recalled below, and it is worthwhile only investigating the effects of nonlinear dispersion
and dissipation on the collapse mechanism [4].

Equation (2) can be reduced to the convenient form(ξ → x,ψ → u)

∂tu+ i∂2
xu+ β|u|2∂xu+ iγ u∂x |u|2+ iσ |u|4u = 0 (3)

after using simple rescalings together with point and gauge transformations that the interested
reader will find detailed in [4, 5]. Here,β refers to the coefficient of the nonlinear dispersion,
γ is related to the Raman effect andσ , henceforth chosen to be positive for describing self-
focusing regimes, is the nonlinearity coefficient attached to the Kerr effect.

In the absence of the two nonlinear derivatives(β = γ = 0), equation (3) simplifies to
the critical nonlinear Schrödinger (CNLS) equation

−i∂tu+ ∂2
xu+ σ |u|4u = 0 (4)

which admits, forσ > 0, solutions that collapse in finite time, provided the energy integral
HCNLS =

∫
(|ux |2− (σ/3)|u|6) dx is negative. This sufficient condition for collapse implies

that the initial datau(x, 0) possess a mass integralN = ∫ |u|2 dx above a critical threshold
N0. For σ = 1, this quantity,N0, takes the valueN0 ' 2.72, as it results from the mass
integral computed on the soliton solutionu(x, t) = φ(x) exp(−iλt) of equation (4) with
λ > 0 and|φ(x)|2 = √3λ/ cosh(2

√
λx).

To analyse the effect of nonlinear dispersion(β 6= 0) on wave propagation, we can
totally ignore the Kerr contribution together with the Raman delaying effect by setting
σ = γ = 0 and in addition omit the linear dispersion term∂2

xu in equation (3). By doing
so, we observe that the mass density of the wavefield obeys the continuity equation

∂t |u|2+ β
2
∂x(|u|2 · |u|2) = 0 (5)

which emphasizes that the wavepacket is being displaced along thex axis with a group
velocity containing a nonlinear contribution proportional to the wave intensity: dx/dt =
1V NL

g = (β/2)|u|2. As a result, the sections of the wavepacket with different intensities
move alongx with different group velocities. Forβ > 0, the sections of the wavefield
with higher intensities have higher velocities, which leads to an increase in the steepness
of the leading edge of an initially symmetric wavepacket. Forβ < 0, nonlinear dispersion
consistently causes opposite effects on the wavefield propagation. In what follows, we
will always consider the case of a positiveβ for the sake of simplicity and setβ = 1 for
technical convenience.

Concerning the complete equation (3), it was speculated in [4] that forσ>0 and
γ = 0, i.e. without the Raman term, localized wavepackets with a sufficiently large
mass(N > 3σN0/

√
12σ 2+ 9σ) should collapse in finite time, while waves with lower

masses should remain regular, even asymptotically disperse, in a way similar to the
spreading/blowing up of CNLS solutions. In the presence of the self-induced Raman effect
(γ 6= 0), it was, moreover, expected on the basis of a variational (Lagrangian) approach
that collapse might be arrested under certain conditions.
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This paper is devoted to clarifying the previous theoretical speculations by means of
accurate numerical simulations. In section 2, we recall some elements of related theory
to equation (3), hereafter called the Raman-extended derivative nonlinear Schrödinger (R-
EDNLS) equation. In section 3, the numerical scheme is specified and the results of
numerical integrations of equation (3) are presented in section 4. The numerical techniques
related to the integration of equation (3) are discussed in detail, as clearing up their
mathematical aspects may be helpful in solving numerically NLS equations of a more
general type than equation (3). Through the numerical solutions, a precise threshold for
collapse is identified in the case of the so-called extended derivative nonlinear Schrödinger
(EDNLS) equation, for whichγ is zero.

2. Elements of theory

The R-EDNLS equation is given as

∂tu+ i∂2
xu+ |u|2∂xu+ iγ u∂x |u|2+ iσ |u|4u = 0 (6)

whereu(x, t) : R× R+ → C, while γ ∈ R andσ ∈ R denote constants.
The mathematical properties of the R-EDNLS equation are well known in certain special

cases. Forγ = σ = 0, equation (6) is completely integrable through the inverse scattering
transform [6]. Forγ = 0 andσ 6= 0, equation (6) forms a Hamiltonian system, processing
three conservation laws [5]. However, this Hamiltonian structure is lost in the general case
γ 6= 0 andσ 6= 0, although the mass integral remains conserved [4].

2.1. Conservation laws and the virial identity

In the special case withγ = 0, the EDNLS equation possesses three conservation laws:

∂tUi + ∂xPi = 0 i = 1, 2, 3 (7)

where the densities,Ui , and their associated fluxes,Pi , take the form

U1 = |u|2 (8)

P1 = i(u∗∂xu− u∂xu∗)+ 1
2|u|4

U2 = 1
2i(u∗∂xu− u∂xu∗) (9)

P2 = 1
2i(u∂tu

∗ − u∗∂tu)+ 1
2|u|4

U3 = |∂xu|2− 1
4i|u|2(u∂xu∗ − u∗∂xu)− σ

3
|u|6 (10)

P3 = −(∂tu∂xu∗ + ∂tu∗∂xu)+ i 1
4|u|2(u∂tu∗ − u∗∂tu)

leading to the conservation of mass, linear momentum, and energy integrals, with the
respective densitiesU1, U2, andU3.

In particular, forγ = 0, equation (6) forms a Hamiltonian system with the Hamiltonian
integral defined as

H =
∫
U3 dx = ‖∂xu‖2

2−
σ

3
‖u‖6

6− 1
4i
∫
|u|2(u∂xu∗ − u∗∂xu) dx. (11)

Here, we have introduced the usual notation for Sobolev spaces with theLp norm:

‖f ‖p =
(∫
|f |p dx

)1/p

and we assume, at least locally in time, thatu ∈ H 1.
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In the presence of the Raman effect, i.e. forγ 6= 0, only the mass integral
∫
U1 dx

remains conserved, while the evolution of the linear momentum,U2, is described by

∂tU2+ ∂xP2 = 1
2γ ∂

2
x |u|4− γ (∂x |u|2)2.

Let us define the total mass,N , of the wavefield as follows:

N =
∫
|u|2 dx (12)

through which we also define the centre of mass as

〈x〉 = 1

N

∫
x|u|2 dx (13)

and, likewise, the mean-square width of the wavefield as

〈(x − 〈x〉)2〉 = 1

N

∫
(x − 〈x〉)2|u|2 dx. (14)

Using the conservation laws, equations (11)–(14) and the assumption that the wavefield is
localized in space, we arrive at the equations of motion for the centre of mass:

N∂t 〈x〉 = 2
∫
U2 dx + 1

2

∫
U2

1 dx (15)

and

N∂2
t 〈x〉 = −2γ

∫
(∂xU1)

2dx − 2
∫
U1∂xU2 dx. (16)

Moreover, we can derive the equation of motion for the mean-square width of the wavefield:

N∂t 〈(x − 〈x〉)2〉 =
∫
(x − 〈x〉)(U2

1 + 4U2)dx (17)

and, finally, the virial identity

N∂2
t 〈(x − 〈x〉)2〉 = 8H + 2

3‖u‖6
6− 4

∫
(x − 〈x〉)U1∂xU2 dx

−4γ
∫
(x − 〈x〉)(∂xU1)

2dx − 2N(∂t 〈x〉)2. (18)

As will be seen shortly, equations (15)–(18) play an important role in the evaluation of
the numerical scheme as well as provide a framework for the discussion of the numerical
results.

2.2. Localized solutions

Particular localized solutions to the EDNLS equation, i.e.γ = 0, may take the form of
stationary solutions or steadily propagating travelling wave solutions. The existence of the
latter follows from the possibility of a balance between the nonlinearity and the dispersive
effect. For time-dependent solutions it should be noted that the nonlinear derivative term
introduces a drift of the wavefield, as explained in the preceding section.

In this work we will, for simplicity, focus attention towards the dynamics of wavefields
that initially are localized. Indeed, as initial conditions for our numerical studies we use
wavefields that are closely related to steady-state solutions of the EDNLS equation. For
this, we find it useful to briefly review what is known about such stationary solutions for
the R-EDNLS equation in general.
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We shall seek stationary solutions to the R-EDNLS equation in the form

u(x, t) = φ(x) exp(−iλt). (19)

Inserting this into equation (6) yields an ordinary differential equation (ODE) forφ as

−iλφ + iφ′′ + |φ|2φ′ + iσ |φ|4φ + iγφ(|φ|2)′ = 0. (20)

In the following we have chosen to split the analysis into the two cases related to the
EDNLS and R-EDNLS equations, separately, as their respective results differ from each
other.

2.2.1. The caseγ = 0. Let us first consider the case whenγ = 0. As shown by
contradiction in [4], only in the case ofλ > 0 can localized smooth solutions exist. We
then search for such a particular solution in the form of equation (19) with the complex
amplitude,φ, assumed to be expressed as

φ(x) = a(x) exp(iθ(x)). (21)

Inserting equations (19) and (21) into equation (20) yields a condition onθ(x), namely

θ ′ = 1
4a

2+ c1

a2
(22)

wherec1 is a constant anda(x) must satisfy

1
2(a
′)2+8(a) = c2

with the potential,8(a), being

8(a) = 1

6

(
σ + 3

16

)
a6− 1

4
(2λ− c1)a

2+ c2
1

2a2
.

Let us now seek a localized solution forc1 = c2 = 0 andσ > − 3
16. The potential then

reduces sufficiently to allow us to find a soliton-like solution (henceforth referred to as
‘soliton’), with amplitude and phase being given by

(a(x))2 =
√

48λ

16σ + 3

1

cosh(2
√
λ(x − x0))

θ(x) =
√

3

16σ + 3
tan−1(exp(2

√
λ(x − x0))).

(23)

Inserting this solution into equations (11), (16) and (18) confirms that the solution is
stationary with a HamiltonianH = 0.

2.2.2. The caseγ 6= 0. Let us now consider the R-EDNLS equation. We will again
seek solutions in the form determined by equations (19) and (21). Introducing this into
equation (20) yields an equation for the amplitudea:

−λa + a′′ − a(θ ′)2+ a3θ ′ + σa5+ γ a(a2)′ = 0 (24)

with equation (22) as a condition on the phaseθ . Since we are looking for localized
solutions we safely assumec1 = 0. After inserting equation (22) into equation (24), the
amplitude,a, is found to satisfy the relation

−λa + a′′ + (σ + 3
16

)
a5+ γ a(a2)′ = 0.
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After multiplying this equation witha′ and integrating overR, while assuming that the
integration constant is zero as we look for localized solutions, the following condition
results

γ

2

∫
[(a2)′]2 dx = 0.

Clearly, this condition can only be fulfilled whena is a constant, which contradicts the
assumption of localization of non-trivial stationary waves. Consequently, localized smooth
wavefields cannot exist as stationary solutions to the R-EDNLS equation. Hence, the effect
of the Raman term is to prevent the existence of localized solutions, as they may arise in
the EDNLS equation.

Let us finally note that in the general framework of equation (20), from which solutionsφ

are sought withλ > 0, this eigenvalueλ can be fixed to unity without any loss of generality.
This property simply follows from the dilation (scale) transformationφ(x)→ λ1/4φ(λ1/2x),
removingλ from equation (20) even whenγ differs from zero.

3. Numerical scheme

In order to accurately resolve the dynamics of the R-EDNLS equation we have developed
a stable pseudospectral multi-domain method. Spectral collocation methods have been
applied extensively in the past for solving nonlinear partial differential equations, often
yielding results superior to those obtained by other methods. However, the position of
the grid points in the computational grid is predetermined, in particular with clustering
close to the boundaries. This clustering of the grid points is known to cause problems for
resolving functions with layers interior to the domain. To circumvent this weakness we
have chosen to apply a multi-domain method, thereby greatly increasing the flexibility of
the grid distribution such that high resolution can be maintained in areas of great variation.
As we will learn later, this approach also reduces the computational workload significantly.

The scheme used in each individual domain is based on Chebyshev collocation methods,
which, due to their superior approximation properties, are widely used for solving nonlinear
partial differential equations.

The Chebyshev polynomial of orderk is defined as

Tk(x) = cos(k cos−1 x)

where |x| 6 1. In the following we will consider collocation methods, where theM + 1
collocation points are chosen to be the Chebyshev–Gauss–Lobatto points found as the roots
of the polynomial(1− x2)T ′M(x), i.e.

xi = − cos

(
iπ

M

)
06 i 6 M.

When applying a Chebyshev collocation method, the function,f (x), is approximated by a
grid function,fi = f (xi), where the grid-points are the Gauss–Lobatto points. We construct
a globalMth order Chebyshev interpolant,IM , to obtain the approximation of the function

IMf (x) =
M∑
i=0

figi(x) =
M∑
i=0

fi
(1− x2)T ′M(x)(−1)M+i+1

ciM2(x − xi) .

To seek approximate solutions,IMf (x), to a partial differential equation, we need to
obtain values of the spatial derivatives at the collocation points. This is accomplished
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by approximating the continuous differential operator by a differentiation matrix with the
entries

Dij = g′j (xi)
such that the derivative off at a collocation point,xi , is approximated by

df

dx
(xi) ≈ d(IMf )

dx
(xi) =

M∑
j=0

Dijf (xj )

and likewise for higher derivatives. For the explicit expressions of the entries of the matrix
operator and further details on collocation methods, we refer to [7].

Let us now consider equation (6) and introduce the state vector,u = (ur , ui), with the
usual variable being related asu = ur + iui . With this notation, the R-EDNLS equation
transforms into two real coupled partial differential equations (PDEs) as

∂tu− A∂2
xu+ |u|2I∂xu− σ |u|4Au− γ ∂x(|u|2)Au = 0 (25)

where the two matrices are given by

A =
[

0 1
−1 0

]
I =

[
1 0
0 1

]
.

We note in particular thatA is skew-symmetric, i.e.uTAu = 0, reflecting the dispersive
nature of the equation.

Two problems need to be addressed in order to establish the scheme. As we wish to
compute the solution in a finite section ofR we need to obtain open boundary conditions
and, once these are obtained, develop a way of imposing them. Secondly, we need to
discuss a scheme for the patching of the independent domains to arrive at the final global
solution. As we will learn shortly, these problems are all closely related.

3.1. Well posed open boundary conditions

Let us first focus our attention on the development of open boundary conditions. As we
are dealing with a high-order method, we require that the boundary conditions with the
equations and the data form a well posed problem.

For this purpose, we consider the intervalx ∈ [−1, 1], multiply equation (25) withuT

and integrate over the interval to obtain the condition for well posedness in an ‘energy’
sense as

1
2

d

dt
‖u‖2

2 = [− 1
2|u|2uT Iu+ uTA∂xu]1

−1 6 0

where we have applied the skew-symmetry ofA. If we rewrite this condition as follows:

−1

2|u|2 [(|u|2u− A∂xu)T (|u|2u− A∂xu)− (A∂xu)T (A∂xu)]1
−1 6 0

we immediately obtain the well posed homogeneous boundary conditions as

x = −1 : |u|2u− A∂xu = 0

x = 1 : A∂xu = 0.
(26)

Those represent the type of boundary conditions that are required at the open boundaries,
be they subdomain boundaries or physical boundaries.
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3.2. A stable penalty method

Solving equation (25) using a Chebyshev collocation method involves seeking anMth
degree polynomial,uM = IMu, satisfying

∂tuM − A∂2
xuM + |uM |2I∂xuM − σ |uM |4AuM − γ ∂x(|uM |2)AuM = 0 (27)

at the internal collocation points,x = xi, i ∈ [1, . . . ,M − 1], exactly. The boundary
conditions, equation (26), are given by

|uM(x0)|2uM(x0)− A∂xuM |x0 = g0(t)

A∂xuM |xM = gM(t)
(28)

whereg0 andgM signifies the prescribed boundary condition.
The traditional method of imposing the boundary conditions is to solve equation (27) in

the interior of the domain and then enforce the boundary conditions strongly at the boundary
points. However, this approach does not take into account the fact that the equation must be
obeyed arbitrarily close to the boundary. Furthermore, it has been proven difficult to enforce
general Robin boundary conditions consistently when using pseudospectral approximations
of nonlinear problems. To overcome these problems, we follow the line of thought initiated
in [8, 9] and propose a penalty method for approximating the R-EDNLS equation at the
collocation points,x = xi, i ∈ [0, . . . ,M], as follows

∂tuM − A∂2
xuM + |uM |2I∂xuM − σ |uM |4AuM − γ ∂x(|uM |2)AuM
= − τ0Q0(x)[|uM(x0)|2uM(x0)− A∂xuM |x0 − g0(t)]

− τMQM(x)[A∂xuM |xM − gM(t)] (29)

where

Q0(x) = (1− x)T ′M(x)
2T ′M(−1)

QM(x) = (1+ x)T ′M(x)
2T ′M(1)

.

These two functions have the property of being zero at all the Chebyshev–Gauss–Lobatto
collocation points except at the two end points of the domain.

We note that the penalty method as given by equation (29) combines the boundary
conditions and the governing equation into one equation. When using such an approach,
the boundary conditions are not exactly obeyed at the boundary. However, the method
remains spectrally accurate as we will soon illustrate. One may also observe that the
scheme is equivalent to the traditional way of imposing boundary conditions asτ0 andτM
approach infinity.

The parameters,τ0 and τM , are then determined such that the semi-discrete
approximation to the initial-boundary-value problem is asymptotically stable.

To prove stability of the overall scheme we consider the linearized and localized
approximation to equation (29). Applying the approach developed in [9] and the skew-
symmetry ofA, it is straightforward to prove asymptotic stability for the scheme provided

τ0 = τM = M2

2
.

With this we have completed the specification of the scheme in a single domain with
open boundary conditions. However, extending this to a multi-domain framework involves
nothing more than the realization that the subdomain boundaries may also be viewed as
open boundaries, albeit of a rather special kind as the boundary condition is computed in
the neighbouring domain. Consequently, to patch the domains together we need to pass
information in the form of equation (26) between the domains, substitute these forg0 and
gM in equation (29) and finally modify the solutions at the individual boundaries.
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3.3. Time stepping and diagnostics

For temporal integration we use a fourth-order Runge–Kutta scheme with the boundary
conditions and the patching being performed at the intermediate time steps. Following
completion of each time step, we enforce global continuity. The time step is computed
adaptively as

1t 6 CFL×min
i

[ |uM(xi)|2
1ix

+ 1

(1ix)2

]−1

where1ix refers to the local grid spacing. In most computations we use a value of
CFL= 0.75.

To compute the conserved quantities defined by equations (8)–(12), we need to compute
integrals over the domain. For this we use Clenshaw–Curtis quadrature as∫

f (x) dx =
M∑
i=0

f (xi)wi

where the weights,wi , are given in [10]. This quadrature rule is exact forf being a
polynomial of at most orderM. Exact computation of theL6 norm in the Hamiltonian,
equation (11), thus requires that the quadrature rule is applied on 6M collocation points.
Computation of the conserved quantities therefore involved interpolation ofu and its spatial
derivative onto 6M collocation points. This approach allows us to compute the integrals
exactly.

To verify the performance and accuracy of the scheme we use the equations of motion
given in equations (15)–(18). At each time step we compute the values of the temporal
derivative from the instantaneous fields. At the same time we compute, at each time step,
the actual value of the mass centre and the width of the wavefieldu, and then use a fourth-
order one-sided finite-difference scheme in time to obtain the approximate values of the
temporal derivatives. We define a measure of the error as

|f | = |f
E − f C |
|f E|

wheref E refers to the computation of the quantity,f , using equations (15)–(18), whilef C

is computed through the finite-difference approximation in time.
Comparing these two different ways of computing the temporal derivatives of the mass

centre and the width of the wavefield provides a very good test on the accuracy of the
overall scheme. As we are using an adaptive time step we use a finite-difference scheme
with arbitrary grid size as discussed in [11].

3.4. Test of the multi-domain scheme

Let us finally present a test of the complete scheme forγ = 0, i.e. only for the EDNLS
equation, andσ = 1.0. We use the steady-state solution defined by the expressions (23)
with λ = 1.0 and advance the solution untilt = 1.0. Although the problem is steady state
we deal with it as a fully unsteady problem.

We solve this problem in the domain ofx ∈ [−8, 8] and use different resolution,M,
and number of subdomains,K. At the outer boundaries we impose the exact solution while
the subdomain boundaries are treated as discussed previously in this section.

In figure 1 we show theL∞ error between the computed and the exact solution at
t = 1.0 for various choices ofM in K equally sized subdomains. It is clear that the scheme
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Figure 1. Computation of theL∞ error att = 1.0 for various choices of resolution,M, and a
number of equally sized subdomains,K.

maintains spectral convergence byM refinements as well asK refinements despite the
use of a multi-domain approach. Curiously enough, the one-domain solution, i.e.K = 1,
requires a very highM to achieve a level of accuracy comparable with that obtained when
using several domains. This is caused by the fact that the wavefield is strongly localized
in the centre of the domain, a situation that is less fortunate for the one-domain approach.
Furthermore, for very highM, effects of round-off errors start to affect the accuracy.

In addition to being more accurate, the multi-domain method is also significantly faster
than the one-domain scheme. Performing a ‘cost-benefit’ analysis as introduced in [12]
leads us to the conclusion thatK = 6 seems to be an optimal choice with respect to
computational efficiency, i.e. to the minimization of computing time.

In the remaining part of this paper we will typically consider the intervalx ∈ [−14, 14]
and split this into six subdomains asx1 ∈ [−14,−4], x2 ∈ [−4,−2] andx3 ∈ [−2, 0] and
symmetrically aroundx = 0. At the open boundaries we simply assume that the wavefield
and its spatial derivatives are zero.

4. Numerical results

As initial conditions for our numerical studies we will use a slightly perturbed steady-state
solution to EDNLS given in equation (23), such that the structure of the initial wavefield
remains unchanged, but the mass,N , may be different from that of the steady-state solution
which we name,Ns. The size of the perturbation is measured through the difference between
N andNs.

In all cases we use the parameterσ = 1.0 in equations (6) and (23). Also, we
set λ = 1.0 without loss of generality, as it proceeds from the scale invariance of
equation (20) mentioned at the end of section 2. Computed with the EDNLS soliton
amplitude equation (23), the value ofNs is then approximately given byNs ' 2.5. Note
that Ns remains of the same order of magnitude as the mass associated with the ground
state of the CNLS equation, namelyN0 ' 2.72.

We have chosen to consider the cases ofγ = 0 andγ 6= 0, separately, as the dynamics
is rather different, whether the Raman term is absent or not.
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Figure 2. Decaying wavefield with an initial mass ofN = 0.9Ns. The solution is shown for
t = 0.0–5.0 with an interval of 1.0.

4.1. The caseγ = 0

The dynamics of the initial wavefield is strongly dependent on the size of the perturbation
and we find it illustrative to split the results into three different scenarios.

4.1.1. The subcritical case,N < Ns. Let us first consider the case of solutions with a
subcritical mass:N < Ns. Following [4] we know that the constraintN < Nc, where the
best attainable estimate of the critical mass is

Nc = 3σ√
12σ 2+ 9σ

N0 (30)

guaranteesH > 0, such that, governed by equation (18), the solutions may disperse
asymptotically in time with an increasing mean width. As introduced in section 1,N0

denotes the soliton mass for the standard CNLS.
For the actual choice ofσ = 1.0, we obtainNc ' 0.65N0 ' 0.7Ns. However, with

this estimate, the condition for wave spreading,N < Nc, is only a sufficient condition as
is indeed illustrated in figure 2 where we show the spreading of the initial wavefield with
a mass even slightly exceedingNc : N = 0.9Ns. We have usedM = 24 in each domain
yielding an error as|〈x〉t | ∼ 10−4 and |〈x〉t t | ∼ 10−2, while the mass is conserved to 10−6.

It is clear that, at least for an initial condition with a structure like the soliton solution,
the estimate ofNc is conservative. The drift towards negative values ofx can be justified
from the property explained in section 1, according to which wavepackets move alongx

with a group velocity possessing a nonlinear contribution1V NL
g that evolves like|u|2. In

this case, the intensity levels of the localized wavefield decrease, and so does the group
velocity of the wavepacket, which forces the latter to move leftward. This behaviour can
also be predicted from equation (15).

4.1.2. The critical case,N ' Ns. Let us now consider the case whereN ' Ns. In fact, we
will consider the marginal cases ofN = (1± 0.01)Ns. The results of long-time integration
with M = 20 in each domain is shown in figure 3.
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Figure 3. Contour plot of |u| illustrating the temporal development of initially localized
wavefields with a mass close to the EDNLS soliton mass,Ns, i.e. slightly less than and more
than the soliton mass.

We find that an oscillatory mode appears, drifting leftward and rightward forN =
0.99Ns andN = 1.01Ns, respectively. In both situations mass conservation is ensured to
10−6, while the linear momentum and the Hamiltonian are conserved to 10−5. We also
find that |〈x〉t | ∼ 10−5 and |〈x〉t t | ∼ 10−2. Again the direction of the drift is as expected
from equations (5) and (15). In this situation, it can be explained by means of the perturbed
solutionu = (1+ ε̃)φ, whereφ denotes the soliton solution defined by equation (23) andε̃ is
a small parameter satisfying|ε̃| � 1. By inserting this perturbed solution into equation (15)
for the wave centre of mass, it is found that the latter evolves asN∂t 〈x〉 = ε̃‖φ‖4

4+ o(ε̃2),
after using∂t 〈x〉 = 0 on the soliton solution. The previous relations clearly show that〈x〉
moves leftward for̃ε < 0 and rightward in the opposite caseε̃ > 0.

The oscillatory mode cannot be quantified for the moment, but we may nevertheless
view it as a marginal boundary behaviour lying between the asymptotic spreading revealed
in section 4.1.1 and the singular collapsing evolution detected below. The exact boundary
N = Ns would then correspond to the standing wave soliton solution remaining centred at
x = 0 for every time and, herein, undergoing no spatial drift.

4.1.3. The supercritical case,N > Ns. In [4] it was argued on the similarity between
EDNLS and CNLS equations, that one should expect the wavefield to collapse forN > Nc,
as inferred from the conditionH < 0, provided the latter requirement be sufficient for
assuring the vanishing of the virial integral〈(x − 〈x〉)2〉 at a finite time.

In figure 4 we show that this is indeed true at least from the slight perturbation of
N = 1.1Ns > Nc. The computation is performed withM = 48 and, until shortly before the
collapse, the mass is conserved to 10−9, while the linear momentum and the Hamiltonian
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Figure 4. Collapsing solution with an initial massN = 1.1Ns. The magnitude,|u|, is shown
for time ranget = 0.0–1.2 with intervals of 0.1.

are conserved to 10−6. We also find that|〈x〉t | ∼ 10−7 and |〈x〉t t | ∼ 10−5. From this
figure, we still observe the drift of the wavefield towards positivex, which results from the
nonlinear dispersion that participates in the wave group velocity with a positive intensity-
dependent contribution. The higher the wave intensity becomes, the more rightward-shifted
the wave amplitude is. Besides, compared with the estimate found in [4], the criterion for
collapseN > Nc resulting fromH < 0 has to be exceeded to a small extent, because the
nonlinear dispersive contribution may counteract the negativity of the right-hand side of
equation (18) which is required to promote the collapse. As anticipated in [4], collapsemay
occur forN > Nc with H < 0, but this condition alone seems not sufficient for ensuring
the blow-up. Here, the previous numerical simulations allow us to determine accurately
the mass threshold for collapse: apart from the tiny perturbations observed in figure 3, this
threshold appears to be nothing else but the mass integral computed on the EDNLS soliton
solution,Ns, instead ofNc, with Ns > Nc.

4.2. The caseγ 6= 0

Let us now consider the more general problem of the dynamics of R-EDNLS solutions. As
we have previously discussed, no localized solutions exist forγ 6= 0.

In the following, we will discuss the dynamics of initially localized wavefields, defined
in this case by the steady-state solution to the EDNLS equation, for various values ofγ

and, in particular, investigate the effect ofγ 6= 0 on the collapse dynamics.
As for EDNLS we have chosen to split the discussion into the three situations of

subcritical, critical and supercritical mass,N , as related to the EDNLS ground-state solution
with massNs.

4.2.1. The subcritical case,N < Ns. For the case of a subcritical mass, there are only
minor differences between the dynamics of solutions respectively governed by the EDNLS
and R-ENDLS equations. In both cases, the solutions disperse rapidly with a spreading of
the localized wavefield.
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Figure 5. Decaying of the EDNLS soliton for (a) γ = 1 and (b) γ = −1, respectively. The
solutions are shown fort = 0.0–2.5 with an interval of 0.5.

4.2.2. The critical case,N = Ns. The critical case forN = Ns is more interesting. We
recall that forγ = 0 an oscillatory mode appeared forN being slightly perturbed fromNs.

In figure 5 we illustrate the general dynamics observed forγ = ±1 andN = Ns. The
computations are performed withM = 24 in each subdomain and in both cases we assure
mass conservation to 10−6, while |〈x〉t | ∼ 10−4 and |〈x〉t t | ∼ 10−2.

The dynamics of the two cases forγ > 0 andγ < 0 are rather different, although the
final result appears to be the same, i.e. with a spreading and decay of the initially localized
wavefield. However, while forγ < 0 we observe an initial steepening of the wavefield,
followed by a uniformly decaying, slightly rightwarded, drifting motion, the situation for
γ > 0 is different. In this case, the initial steepening is followed by a faster leftward drift
and a structured solution forms and decays very slowly. Compared with the former solutions
to the EDNLS equation, the centre of mass of the wavefields undergoing the Raman effect
appears to be strongly shifted to the left forγ > 0 and more moderately to the right for
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Figure 6. (a) The decaying and spreading wavefield forγ = 1. The solution is shown for
t = 0.0–1.2 with an interval of 0.2. (b) The collapsing wavefield forγ = 0.5 for t = 0.0–0.95
with intervals of 0.1 with the exception of the explicitly marked solutions.

γ < 0, which is in accordance with the displacement of the wave centroid governed by
equation (16). Following the sign ofγ , the Raman effect can thus interplay with the natural
drift induced by the nonlinear dispersion of the waves.

4.2.3. The supercritical case,N > Ns. Forγ = 0 we observed that the wavefield collapses
for N = 1.1Ns. The situation forγ 6= 0 is very different, as there is also a significant
difference between the casesγ > 0 andγ < 0.

Let us first consider the caseγ > 0 andN = 1.1Ns. In figure 6 we show the
development of the initially localized wavefield forγ = 1.0 andγ = 0.5. The computations
are done forM = 36 yielding a mass conservation to 10−8, while |〈x〉t | ∼ 10−5 and
|〈x〉t t | ∼ 10−3.
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Figure 7. The decaying wavefield forγ = −0.5 shown fort = 0.0–2.1 with an interval of 0.3.

Whereas the wavefield in the case ofγ = 1.0 behaves similarly to that withN = Ns,
we now observe withγ = 0.5 that the solution, instead, collapses. Hence, forγ > 0 it
seems that only forγ above a threshold valueγc can the Raman term inhibit collapse of
the initially supercritical wavefield.

The situation forγ < 0 appears to be completely different. In figure 7 we show
the development of the wavefield forγ = −0.5, i.e. the numerically opposite value to
γ = 0.5 for which collapse takes place. We observe that, following an initial steepening
of the wavefield on the route towards a collapse, the effect of the Raman term becomes
sufficiently strong to inhibit the collapse. In this case, we have been unable to establish a
threshold under which collapse survives the effect of the Raman term. For values as low as
γ = −0.01 the picture qualitatively remains the same, i.e. following an initial steepening, the
wavefield finally decays and spreads out. These computations are performed withM = 40,
yielding a mass conservation to 10−8, while |〈x〉t | ∼ 10−7 and|〈x〉t t | ∼ 10−3. These results
confirm the absence of collapse predicted by the Lagrangian approach of equation (3) in
[4], for negative values ofγ .

5. Concluding remarks

In this work, we have examined the dynamical behaviour of localized solutions to the R-
EDNLS equation by means of a stable pseudospectral multi-domain numerical method. This
equation can be viewed as a generic model for describing the propagation of short wavetrains
in dispersive Kerr-type media promoting high-order nonlinear dispersive effects, as they may
take place in monomode dielectric guides. In every situation investigated here, the nonlinear
dispersion associated with theβ-dependent nonlinear derivative term of equation (3) was
displayed to introduce a wave drift along thex axis. This drift has been shown to be related
to the nonlinear part of the group velocity of the wave depending on the peak intensity.
When the self-induced Raman effect is absent(γ = 0), solutions have been shown to spread
out, or to oscillate, or still to collapse at a finite time, whenever their associated mass integral
lies below, around or far above the critical thresholdNs, respectively. This thresholdNs

corresponds to theL2 norm of the soliton solution determined by the expressions (23). By
comparison with the theoretical estimates obtained in [4], it was expected that the solution
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u(x, t) should surely behave regularly, even disperse like spreading CNLS solutions, when
N is smaller than the quantityNc recalled in equation (30), whereas solutions with mass
integrals belonging to the opposite domainN > Nc could collapse. These expectations have
here been verified numerically. In addition, while the exact mass threshold for collapse
remained undetermined in [4], the present analysis enabled us to fix it in close vicinity
of the EDNLS soliton massNs, which supports the comparison with blowing up CNLS
solutions possessing a massN > N0. Considering next the Raman effect(γ 6= 0), it
was also predicted in [4] that wave collapse may not be promoted, especially for negative
values ofγ , as long as this Raman effect could be strong enough to counteract wave
self-focusing. Again, this property was here revealed numerically. Nevertheless, collapse
appears to possibly develop within a finite range of positive values ofγ : 0 6 γ 6 γc.
For the initial data investigated in the present work(N = 1.1Ns), we found 1

2 < γc < 1.
From this basis, we can anticipate that the thresholdγc may increase with an increasingN .
However, determining accurately this threshold as a function of the initial mass for a given
wavefield remains an open problem.
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